
ORTS File Checker

A command-line tool to check content for ORTS

Contents
1. Introduction...2
2. Usage...2

2.1. Single file usage...2
2.2. Multiple file usage...2
2.3. Verbose...3
2.4. Hierarchical loading...3
2.5. Advanced cross-checking..4
2.6. Starting from windows explorer..4

3. File recognition..4

1. Introduction
This document describes a tool for ORTS that checks whether files needed for ORTS can be loaded
properly or not. This loading is done stand-alone in the sense that it is not needed to run the
simulator. In this way you can check files to make sure they will not pose problems in ORTS or
perhaps are simply neglected

2. Usage

2.1. Single file usage

This is the basic usage mode:

ORfileXcheck.exe <file>

example:

ORfileXcheck.exe marias.tdb

The output will normally just be a line with the file that is being loaded and a line that says ‘OK’. It
is possible that some warnings are shown as well. But if the file can at least be loaded, you will get
an ‘OK’. In case the file cannot be loaded and an exception is raised in the code, the exception
message will be shown instead

2.2. Multiple file usage

In many cases you want to check multiple files:

ORfileXcheck.exe <files>

examples:

ORfileXcheck.exe marias.tdb marias.rdb

ORfileXcheck.exe *.pat

ORfileXcheck.exe *.sms *.wav

ORfileXcheck.exe *

The files can either be actual files or they can contain the character ‘*’ indicating multiple files. Do
note that in case a ‘*’ is used also subdirectories will be searched. So calling ORfileXcheck.exe

*.ace will find all *.ace files in or under the current directory.

When multiple files are loaded you will first get the same result as loading all files individually. But
at the end there will also be a summary showing the amount of files loaded, the amount of files
skipped (e.g. because the file is recognized but not used like a _n.raw file or because the file cannot
be loaded independently), the amount of files not recognized, as well as a count of all errors,
warnings and informations.

2.3. Verbose

The option /v or /verbose will not only show errors and warnings, but also informational trace
output.

Possibly the advanced cross-checking (see below) should actually partially be implemented using
these kind of messages. That needs to be seen.

2.4. Hierarchical loading

This is a more advanced feature that will be implemented later.

Obviously all the files that are used are not really independent. There are various relations between
the files:

• Many files can be loaded independently

• A number of files cannot be loaded independently at all: they need information from another
file. For instance

◦ signal script files cannot be loaded without information the signal config file

◦ tile .raw files cannot be loaded without information from the .t terrain file

• Many files refer to other files. Although some or perhaps even all of these referred-to files
can be loaded independently, it is nice to have an option where not only a file but also all
directly referred files are loaded. For instance

◦ .act files refer directly to .srv and .pat files

◦ Signal config files refer directly to signal script files

◦ the .trk file refers directly to a .ace and .sms file used during loading

• And then there are files that are loaded not directly, but only when needed in the simulator.
The obvious example here are the worldfiles.

For all these relations we have separate options:

• Without any additional options we only load directly loadable files

• With the option /d or /dependent we also dependent files

• With the option /r or /referenced we also load directly referenced files

• With the option /a or /all we load all files that might be used during simulation

For clarity, only when no additional option is given will the files be loaded in alphabetical order.
With any of the options given, additional files will be loaded as soon as they are identified. This is a
depth-first way of loading the files which should keep related files as close as possibe in the list.

Some files might be loaded refered to multiple times (e.g. from different activities or from different
world files). These files will be loaded only once.

Examples:

ORfileXcheck.exe *.t /d

This will load not only the .t files, but also the dependent _y.raw and _e.raw files

ORfileXcheck.exe sigcfg.dat /d

This will also load possible signal scripts

ORfileXcheck.exe *.dat /d

This will load all .dat files. In case it finds a signal script file (which is not independently
loadable and not even recognized as a script file) it will defer loading that file until a
recognized signal config file is parsed and refers to that signal script file.

ORfileXcheck.exe eastbound.act /r

this will also load the referenced .srv and .pat files

ORfileXcheck.exe *.w /r

This will also load various .s files, hazards, …

ORfileXcheck.exe *.trk /a

This will load all relevant files belonging to that route, as well as a few engines and wagons

2.5. Advanced cross-checking

This is a more advanced feature that will be implemented later. This describes a little bit the vision
of where it needs to go.

Additional option: /c or /crosscheck

In the future, this option is used to do more extensive cross-checking between files (e.g. checking
that locations defined in a .pat file are in fact present in the .tdb, …).

2.6. Starting from windows explorer

Primarily this tool is a command-line tool. However, windows explorer also allows you to open a
file with an application of choice. For this tool that does not make sense: the output will not be
saved anywhere and the output window will be visible only until the tool is finished, which is way
too short.

3. File recognition
Files that are loaded directly (so not from another file) will be recognized mainly by their extension.

If the extension is not uniform

For some formats, the SIMIS "JINX" header at the start identifies the file type; e.g. "JINX0G0t" is
the signal configuration (sigcfg.dat), "JINX0g0t" is the gantry file (gantry.dat), and "JINX0v1t" is a
car spawner file (carspawn.dat). However, the same header is sometimes the same for multiple file
types; e.g. "JINX0T0t" is used for the four files containing the track and road databases and item
tables.

	1. Introduction
	2. Usage
	2.1. Single file usage
	2.2. Multiple file usage
	2.3. Verbose
	2.4. Hierarchical loading
	2.5. Advanced cross-checking
	2.6. Starting from windows explorer

	3. File recognition

