Changes to Timetable Mode - May 2017 Page 1 of 12

1. Introduction.

This document is intended as preliminary documentdor the changes in timetable mode as
committed in May 2017.

2. Changesto file format.

In order to properly process non-standard charaatestation names, the file must be stored as
unicode .txt file with ‘tab’ as separating characte

For routes which do not hace station names whiakte@® non-standard characters, files stored
as .csv with '’ or " as separator will still lipported.

The proper file-extention is timetable-or, but tiadde or will also still be supported.

3. Coupling and Uncoupling of trains.
3.1. Notes.

3.1.1. General notes.

* When coupling or uncoupling to or from the plagrain, it is not required that the player
operates the angle cocks and brake hoses, thesfarmed automatically.

» The player train cannot just couple to any oth&int coupling is only possible if this is
defined in the timetable.

» Uncoupling from the player train cannot be perfedhusing the Train Operations Window.
If uncoupling is defined in the timetable, it wok handled automatically when the train stops
at the required location. It does not require actioas by the player.

3.1.2. Noteson power units.

Uncouple commands allow the use of ‘power unitimigbns.
The following applies when ‘tenders’ are includadhe train’s consist :
« Ifthe first unitis an ‘engine’, any ‘tenders’liawing that ‘engine’ are regarded as part
of that ‘power unit’.
« If the first unit is a ‘tender’, any further ‘teacs’ and the first ‘engine’ encountered
after those ‘tenders’ are all regarded as pattatf‘power unit’. Any further ‘tenders’
following after the first ‘engine’ are not regardasl part of that ‘power unit’.

3.1.3. Noteson consist names for use in uncouple commands.

Even though a consist definition is required farretrain, actually this information is often not
used.

If a train is formed from another train, througifarms or $detach command, it disregards its
own consist definition, but instead ‘inherits’ tbensist from the train from which it is formed.
Each unit in that train or part of train therefateo inherits the original consist information.
Each unit has a variable “original consist”, tlsiset to the consist of which the unit is part when
this unit is placed in the simulation. The unit ge¢his “original consist” name during its full
lifetime in the simulation, regardless of the trafrwhich it forms a part.

It is this ‘original consist’ name which is useddetermine which units must be detached if a
consist name is used in an uncouple command.

Extra care should be taken in case units haventez)ed the simulation through a pool, in
particular if the pool can hold units originatimgi different consists. A unit will keep its
“original consist” information even if it has bestored in a pool, so the consist information for
a unit exiting from a pool can not be known.

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 2 of 12

3.2. Detach command.

The $detach command defines that units are to taelded from that specific train. The
detached units will form a new train as definethemcommand. The train from which the units
are detached will continue as defined.

If the $detach command is combined with a $fornmmmand, the units will be detached first,
then the train will form into the new train.

Command fields.
The $detach command can be defined in the followimgtable fields :
* #note field : the units will be detached as tlantis started.
« any station field : the units will be detached wihiee train stops at the relevant station.
The detach will take place immediately as the tehaps.
» #dispose field : the units will be detached whHeatrain has reached its end position.
The $detach command in the #dispose fieldst be preceded by eithe$atatic or
$forms command.

Command syntax.
$detach <unit details> <train details>

<unit details> can be any of the following :
« /power : all power will be detached - see note below.
» /leadingpower : the first power unit at the front of the trasndetached.
 /allleadingpower : all power units at the front of the train areadded.
» /trailingpower : the last (rearmost) unit at the rear of thentiaidetached.
» /alltrailingpower : all power units at the rear of the train areadbéed.
» /nonpower : all units which are not part of the ‘power uhaéthe train are detached.
* Junits=<n>: the number of units as indicated are detached.
If n > 0, the units are detached from the fronthef train.
If n <0, the units are detached from the reahefttain.
» /consist=<name> : the part of the train which contains the unitdwhe original
consist name as indicated is detached.
For details on use of the consist name, see gemetalabove.
The relevant units must form either the front @rngortion of the train,
otherwise no units will be detached.

Note on use ofpower and/nonpower qualifiers :

the program will automatically derive whether tloaver units are at the front or the rear of the
train, and will detach the relevant portion.

These commands must therefore not be used ifdirelias power at both ends.

Take care with trains which have driving-trailecaly control cars), as these are defined as
‘engines’ and are thus seen as ‘power’. fgwver and/nonpower qualifiers must not be used
for such trains, e.g. push-pull trains and Multipleits.

<train details> can be any of the following :
» [forms=<newtrain> : the detached units will be formed into the trasndefined.
Syntax for this command is similar as for the gah$forms command.
» /static[=<newtrain> : the detached units will be formed into a statn.
A name can be defined for this new train but rias compulsory.

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 3 of 12

If the $detach command is combined with a $form$static command, the general $forms or
$static command applies to the portion of the tvaiich continues, the $forms or $static
qualifier in the $detach command applies to thadstd portion.

Examples.
$detach as part of a station stop command, wheream drops 3 units at the rear as new train :
$detach /units= -3 /forms=newtrain

$detach defined in #dispose command : all non-pawis are detached as static train, the
power units are formed into a new train :
$forms=newtrain $detach /nonpower /static

$detach defined in #dispose command : the tramg$a static train, but all leading power is
detached as new train :
$static $detach /allleadingpower /forms=newtrain

Note that these last two examples are two diffeneyts to get to the same situation. Which
definition is the best to use can depend on tlhatsidn and the composition of the train, but in
general it makes no difference.

Detach command for player train.

When a $detach command is set for the train whicelected as player train, one of the three
following situations will occur :
* Only the portion which continues contains one oreérdriveable engines.
The player will remain with the present train.
* Only the detached portion contains one or moneedble engines.
The player will switch to the detached portion, anlll continue with the new train.
» Both portions contain one or more driveable engjine
A window will pop up, informing the player that thein will split, in which portion
the engine is located which the player is now dgyiand what train the other portion
will form into.
The player can switch cabs and engines using Qeifrand the window will update
automatically depending on the selected engine.
When the player is in control of an engine in tbetipn with which the player wants
to continue, the ‘confirm’ button in the window c@ pressed and the detach will take
place.

3.3. Attach Command.

The $attach command defines that a train is telatia another train.

The attaching train will become part of the traimthich it attaches, and ceases to exist.

It is not possible to attach to a static train ahig not defined to start at a later time; in that
situation thebpickup command should be used.

Command fields.
The $attach command can be defined in the followiimgtable fields :
« any station field : the train will attach to thefthed train at that station.
As the train ceases to exist, any definitions fat train beyond that station are
ignored. Any dispose information is also ignored.

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 4 of 12

» #dispose field : the attach will take place atéhd of the train’s path.
The $attach command may not be used in combinatittnany other dispose
command.

Command Syntax.
$attach = <train> [/firstin] [/setback]
<train> : other train to which this train is to attach.
[firstin : this train arrives into the station as firsirirésee note below).
This qualifier can only be used for an $attach camdin a station.

/backup : the train has to back up to perform the attaehthe other train arrives behind this
train. This qualifier can only be used in combiaatwith the/firstin qualifier.

Notes.

When defining agattach command in thédisposefield, it must be ensured that the other train
is at the location at the end of this train’s pdthe attach can only take place at that location,
even if the other train is in this train’s pathaatearlier location. This is to avoid accidental
attachment in the wrong location. For instance, trams follow each other some distance
before reaching the location where the trains@edtach. If the first train is stopped, e.g. at an
earlier station or at a signal, this would allow 8econd train to attach at that location, which
is not what is intended.

If both trains arrive at the attach location withifairly short time, it is advisable to set a $wai
command for the second train so as to ensuredimestarrive in the correct sequence.

If the attach takes place at a station $heepclear command (see below) can be used to specify
the stop location for the first train to arrivednsure both trains will properly stop in the
platform.

If the attach command is set for a station, thacativill immediately take place on arrival of
the attaching (second) train.

If /firstin qualifier is set, the second train will stop tleemal distance from the first train, and
the first train will move toward the second tramorder to attach as soon as the second train is
at a standstill.

A train to which another train is to attach, wititrdepart from a station or from the location
where the attach is to take place until that atteehactually taken place - in other words, in
case the attaching portion is delayed, the combtira@a will also be delayed.

Attach command for player train.

If the player train is set to attach to anothentrtne player can just run up to that other tegin
appropriate speed and the attach will take platmnaatically. The player will switch to the train
to which the player train is attached.

If /firstin qualifier is set, a note is set in the Next Statidindow informing the player of the
arrival of the second train, and an indication thatattach can be made.

If the player train is waiting for another trainatiach, a note is issued when the attach is made.

No action by the player is required. If the attécto take place at a station, the Next Station
Window will also display information when waitingrfthe attach to take place.

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 5 of 12

When the player train is the first to arrive foratach in a station, please take note of the stop
location information in the Next Station Window @&®to ensure the train stops in the correct
position along the platform.

3.4. PickUp Command.

The $pickup command is used to define a train ¢k pp a static consist. The train which is
picking up will continue as defined, the consistach is picked up will become part of that
train and will cease to exist as separate train.

Because the pickup consist no longer forms an bicain, $pickup can only be used to pick up
static consists which have no more tasks withirtithetable, as otherwise it would violate the
consistency of the timetable. Such consists carrdmted by setting $static as train name, by
using the $static command in the #start field, ipg the $static command in the #dispose field
or by using the /static qualifier in a $detach ccamioh Note that only consists created using the
$static command in the #start field can have andefiname, in all other cases the train in
nameless.

Command fields.
The $pickup command can be defined in the followingetable fields :
* any station field : the train will pick up the de#d train at that station.
» #dispose field : the pick up takes place at theearthe train’s path.
The $pickup command must be preceded by the $foamsnand.

Command Syntax.
$pickup = [<train> | /static]

<train> : defines the name of the train which is to bépip, this can only be used in case
of named static trains.
/static : defines that any consist at the relevant locatdl be picked up.

Pickup command for player train.

When a player train is to perform a pickup, the/ptaonly needs to run up to the waiting consist
at an appropriate speed and attach to that coNgidurther actions are required.

If the player train has formed into a static tréihrough a $forms or a $detach command), the
player needs to wait for the other train to attahthe other train attaches to the player train,
the player will be switched to that other train. fMaher actions are required.

3.5. Comparison between $attach and $pickup commands.

Basically, both the $attach and $pickup command®pe the same action. In the case of
$attach, the train performing the attach ceasesigs, while in the case of $pickup, the train
which is attached to ceases to exist.

The commands are equal and there is no preferencsing either one or the other.

As an example, take a train which terminates anadganto a new working (named newtrain).
The incoming power is detached and runs to sheddasrin), and later other power (named
powerout) is attached to take out the new train.

This sequence can be defined using $attach witfotlmaving commands :
* Incoming train : #dispose command :
$forms = newtrain $detach /power /forms=powerin
* Outbound power : #dispose command :
$attach = newtrain

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 6 of 12

The sequence can also be defined using $pickuptietifollowing commands :
* Incoming train : #dispose command :
$forms = powerin $ detach /nonpower /static
* Outbound power : #dispose command :
$forms = newtrain $pickup /static

These are not even the only options, other vanatare also possible. In all, it makes no
difference to the final outcome. What variatioruse can depend on the location or situation
but also on personal preference.

3.6. Transfer command.

A $transfer command defines the transfer of urets/ben two trains. Both trains will continue
to exist and proceed as defined.

A S$transfer command is defined for one of the sathis train is to arrive at the location as last
train and will run up to the first train to perfotitme transfer.

In the details below, the train for which the tfamss defined is referred to as thetive train,

the first train is referred to as tpassivetrain.

A transfer can take place in both direction, ihe.dctive train can take units from theassive
train, or it can give units to this train.

Command fields.
The $transfer command can be defined in the foligwimetable fields :
« any station field : the transfer will take pladedlaat station.
» #dispose field : the transfer takes place at titec# the train’s path.
The $transfer command must be preceded by the $foormmand.

Command Syntax.
$transfer = <train> <transfer details> <unit detail
<train>: name of thgassivetrain, or/static if the transfer is to be made with a static train.

<transfer details> : defines what transfer is to take place. The wastdefined in the

<unit details> will be transferred as defined in #tensfer details>.

Options :

/give : units as defined are transferred fragive train to thepassive train.

/take : units as defined are transferred fromphssive train to theactive train.

/keep : units as defined will remain on thetive train, all other units on the
activetrain are transferred to thmassive train.

/leave : units as defined will remain on the passiventrail other units on the
passive train are transferred to tretive train.

<unit details> : defines the units which must be transferredemt las detailed.

Options :

/onepower : a single power unit is transferred or kept.

/allpower : all power units are transferred or kept.

/nonpower : all but the power units are transferred or kept.

/units = <n>: the number of units as defined are transferrddept. Note that for
transfer, <n> must always be > 0.

/consist = <name> : units which “original consist” value matches thefined
consist name will be transferred or kept.

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 7 of 12

Note that these units must be at the relevant étitedrain, otherwise the
transfer can not be performed.

Notes.

For all unit details except thenits qualifier, if the first unit at the relevant entkloe train does
not match the required unit details, no units eaedferred (e.g., /nonpower is defined but the
first unit is an engine).

If the /units qualifier is set but <n> exceeds the length ofrtHevant train, all but one unit is
transferred or kept as appropriate.

Thepassive train will not be allowed to depart from a station og thcation where the transfer
is to take place until that transfer has actuatiguored.

Transfer command for player train.

If the player train is thactive train, the train must be run up to thassive train at an
appropriate speed. The transfer will take placeraatically, no specific actions by the player
are required. If the engine the player is driviegumong the units to be transferred, the player
will switch trains.

If the player train is thpassive train, the player must wait for the transfer to takecplaefore
the train can continue. In this situation, as abd\the engine the player is driving is among the
units to be transferred, the player will switchriga

4. Sart-up delays.

When a train is stopped, e.qg. for a signal at damgakes some time for the train to restart when
it is allowed to do so. This start-up delay has t@en introduced for Al trains in timetable
mode.

Different values are set for the various situatigch can occur.

Each value consists of a fixed part and a randamn plae actual delay which will be applied is
a value in the range between [fixed_part] and ffixgart + random_part].

The values are preset with default values as stm@bow. The default values can be overruled
using the relevant parameters in the timetable file

Restart after reversal is a special situation. dditeonal delay is set, based on the length of the
train. This reflects the time required by the driteewalk to the other end of the train. The value
of this parameter is multiplied by the length af thain to obtain the actual delay.

Default values.
Table below shows the various situations and theqirdefault values.
All values are in seconds except when indicated.

Table 1. Default valuesfor start-up delays

Situation Fixed Value Random Value
Start of new train (“INI” phase) O 10
Restart in “FOLLOW” mode | 15 10

when train ahead has restarted

Restart after stop for pathing | 1 10
reasons (e.g. signal, reversal)

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 8 of 12

Table 1. Default valuesfor start-up delays

Situation Fixed Value Random Value
Restart after station stop 0 15

Restart after attach action 30 30

Restart after detach action 5 20

Additional restart after reversal 0.5 n.a.

(values in Sec / meter)

Parameters.

The default values can be overruled by settingmaters for a sepcific train.

The table below shows the relevant parameters.

The parameters must be set in a row which is defas#r estartdelay.

Values are defined in seconds, except for additimsart after reversal which is set in
sec\meter.

Table 2: Parametersfor start-up delays

Situation Parameter

Start of new train (“INI” phase) $new /fix=<n> /vatm>

Restart in “FOLLOW” mode | $follow /fix=<n> /var=<m>
when train ahead has restarted

Restart after stop for pathing | $path /fix=<n> /var=<m>
reasons (e.g. signal, reversal)

Restart after station stop $station /fix=<n> /var=<m
Restart after attach action $attach /fix=<n> /var=<m
Restart after detach action $detach /fix=<n> /var=<m

Additional restart after reversal $reverse /additional = <n>
(values in Sec / meter)

Future options.

At present, the delays are applied by defauls ihiended that an overall user option will be
introduced which can be used to switch off all gela

Possible future options are that values can bsene of the situations which will be applied
to all trains or perhaps to certain trains onlyctsualues could perhaps be added to route files
(.trk files) or consist files (.con files).

5. Speed control settings

In certain situations, the speed of a train mayels&ricted to a much lower value than allowed
by track speed or consist speed. An example isn&dance, when a train is propelled out of a
siding into a platform.

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 9 of 12

Furthermore, OR uses some specific speed valug¥ toains in certain situations, e.g.
minimum speed on approach to a signal (“creep spesguked when attaching trains etc.

Also, there are situations where trains are nogmathning at a fixed speed somewhat below
the allowed maximum, and only running at maximuloveéd speed when the train is running
late. This is introduced in OR as ‘cruise speed'.

It is possible to specify these values for indiviuaihs. Note that such restrictions are not passed
on if a train forms into another train.

Speed fields.

A row can be set as speed definition using ona@fallowing row identifications :
#speed : values are speed settings defined in m/s.
#speedkph : values are speed settings defined in km/hour.
#speedmph : values are speed settings defined in miles/hour.

Speed settings.
The table below shows the available speed settamgsdefault values if applicable.

Table 3: Speed settings

Command | Description Default Value
#max Overall maximum speed -
#cruise Normal cruise speed. -

Only valid in combination with #maxdelay command.

#maxdelay] Maximum delay (in minutes) for cruise spee -

#creep Creep speed. 2.5m/s

#attach Speed when coupling to other train. 0.4 m/s

6. Pool concept.

The timetable mode offers the ability to keep tsdalive’ until they are needed again later.
These trains, which may be light engines, multipiés or indeed full trainsets, are stored in
sidings until they are required again for the remtvice. In busy areas, like yards, terminal
stations and such, the number of units which anedtthis way can be quite large.

At present, it is up to the builder of the timetald ensure such units are send to and retreived
from the storage in the correct sequence, whichnmeadull diagram has to be worked out of
when train are due to enter the storage area aed thiey are required again. This can be quite
complicated.

The pool concept will take care of the storage ireguents. When a train is send to a pool, the
pool logic will work out where to store this tral@n request of a train the pool will work out
which train is available, and will release thisririiom the pool.

All trains in a pool are supposed to be the sahat,i$ they are all interchangeable. They need
not be the same trains as such, but be equivéiahot possible to set additional requirements
when requesting a train from a pool.

So, for instance, if storage is required for ba#sdl and electric engines, this will require two
pools, each with their own storage area.

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 10 of 12

Definition.

A pool is identified by a unique name.

Each pool contains one or more storage areas,edefie a path. Only dead-end storage areas
are supported (ie there is only one entry/exit ppér storage path).

Each storage area is linked to one or more aceglss,pvhich define the path from an exit/entry
point to or from the storage areas. All storeagbgmust have an access path to all defined
exit/entry points. There can be multiple exit/erggmts, but each storage area needs to have
access to all these defined points.

Path of trains to or from the storage area must beldefined to or from an entry/exit point.
As pools are part of a timetable definition, thérdgon file needs to be stored in the same
directory as the timetable files (subdirectory CiReits in the route’s Activity directory), and
as timetable files it needs to have unicode .twhd, with file extention .pool-or.

There can be multiple pool definition files, anale#le can contain multiple pool definitions.

Train commands.

A train can be send to a pool by the command $pawme>, set in the #dispose line.

A train can be retreived from a pool by the comm$pdol=<name>, set in the #start line,
preceded by the time at which the train is required

A train can be defined as starting in a pool byabmand $create /pool=<name>, set in the
#start line, without time. The train will be creatat the start of the timetable.

Testing and evaluation options.

When there is a pool ‘underflow’, no engine is #aale and therefor no engine is send out on
the request for an engine release. A user optienvsaged, “force create train on underflow”,
which will forcibly create an engine when this sition occurs. This can be used during testing
of a timetable, when it is not yet quite clear hmany engines are required.

Further options may be defined for pool evaluatidow this will be done exactly is still being
considered. One possibility is to set an optioprtot all pool details to a specific file, these
details will contain timings on when engines eted leave the pool, total no. of engines in the
pool after that action, total available space, anderflow and overflow situations.

Another possibility is to add this information asew page to the F5 hud info.

7. Additional commands.
This chapter lists additional commands which hastebeen described in the chapters above.

#notefield.

$doo
sets train as “driver only operation”.
This only affects the playing of the ‘departure sduvhen the train is ready to depart
from a station. When $doo is set, the sound iplayted.

$for cereversal
will set the reversal point of a train to the ‘diging point’ and will disregard any
signals in the train’s path.
Normally, if there is a signal facing the returnedtion of the train between the
diverging point and the defined reversal posititwe, actual reversing position is
placed at this signal.
If $forcereversal is set, such a signal is igna@ed the actual reversing position is

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 11 of 12

placed at the diverging point. This can be uséfufireas with limited signalling, e.g.
when shunting within a yard, the train does nodneego all the way out to the yard
entry signal.

station stopsfields.
As command for stations only :

$stoptime = <n>
Sets the default station stop time to <n> seconds.
This command overrides the default stop time amééfin the .tdb file.
The default stop time is applied to all trains.

As command for stations and train stops :

$restrictPlatformToSignal
Can be used in situations where a signal is platde the platform markers.
Setting this command will restrict the platformthe location of the signal.
This ensures that the station stop will prevailraie signal stop in case the signal is
at danger.

$extendPlatformToSignal
Can be used in situations where the length of@eetvailable as platform is not fully
covered by the signal markers, e.g. because thergunction along the platform.
Setting this command extends the platform to trs¢ §ignal following behind the
platform marker in the train’s route direction. Hewver, the platform will never extend
beyond the actual train’s route.
This command is particularly usefull in loops whé#re actual platform length is
restricted due to access tracks to sidings etwillillow the use of the full available
track length between signals as platform.

As commands for train stops only :

$closeupsignal
This will set a shorter stop distance to the egdaliof a platform instead of the default
value. The shorter distance will only be set ifuiegd to position the train along the
platform as required, e.g. due to train lengthexduse of &keepclear /rear
command.

Skeepclear
This command defines a specific location for anttai stop.
It can be used to keep enough platform length dtasther units to attach, or it can
be used to ensure the train clears a specific Bwitsignal.
The command has the following parameters :
/rear = <n> : required platform length to be kept clear at ahe train
[front = <n> : required platform length to be kept clear in frofthe train
[force:
if used in combination with /rear :
allows the train to run beyond the end signal efgglatform, see below for details.
if used in combination with /front :

Version 2017-05-30

Changes to Timetable Mode - May 2017 Page 12 of 12

will keep required distance clear even if end airtrdoes not fit in platform.

Use of /force in combination with /rear.

If the train does not fit into the platform whemWing the required length of platform
clear at the rear, setting /force will allow thaitrto run beyond the platform end and
through any signals beyond the platform, providieturse that the signals are
cleared.

The train will, however, never run beyond the dedirpath.

If the station stop is the last stop of the trdie, additional command $endstop must
be set to ensure the stop is seen as the end wiutesof the train.

If $endstop is not set and the route extends bettomdtop position of the train, the
train will depart from the station and will termieaat the end of the path.

$endstop
To be used in combination with $keepclear /re@e-description above.

$for cewait
Will force a wait command on the first signal begilanplatform even if this is not the
actual ‘end’ signal for that platform.
In such a situation, a normal $wait command wo@dét on a switch and not on a
signal.

$noclaim
Will prevent the train from ‘claiming’ sections windeld at a signal.
Usefull at busy locations where trains claimingtesuvhen waiting for signals to clear
could cause a lock-up.

#disposefield
Additional qualifier for $forms and $static command
/closeup

Will position the train close to end of track ohet train.
/closeup does not affect the position of a trathéf stop position is a signal or a switch.

Version 2017-05-30

