
Open Rails Design Overview
This is an attemt to rtlatt tht dtsign and omtraton of Omtn Rails (OR). It was writtn froe ey notts

ieetdiattly following an insmtcton of tht OR sourct codt. (In soet casts, it’s quitt mossiblt that ey
inttrmrttaton is in-trror. In that cast, I homt soetont will straighttn et out.)

My insmtcton and nott-taking stssions wtrt usually rtlattd to a smtcifc tomic (t.g., ttrrain). I havt homts
that I will, in tht courst of tet, covtr all iemortant asmtcts of OR. I will introduct mtrhams unfaeiliar
vocabulary as I go.

Contents
Conttnts..1

Major Coemontnts..1

Launchtr..1

Mtnu..1

RunActvity...2

Rtndtr Proctss..3

Loadtr Proctss...3

Umdattr Proctss...3

Omtn Rails Ttrrain..4

Ttrrain Fundaetntals..4

Tilt Handling..5

TDBTravtlltr..5

Ammtndix A – An Objtct-Oritnttd Prograeeing Prietr..6

Ammtndix B – Ktyboard Controls..6

Major Components
Omtn rails is organiztd into thrtt eajor coemontnts – Launchtr, Mtnu, and RunActvity. A ftw words on

tach is in ordtr.

Launcher
Launchtr.txt (Launchtr/Prograe) chtcks to stt if mrtrtquisitt sofwart (i.t., librarits) is installtd. If all is

wtll, Launchtr starts Mtnu.txt and ttreinatts.

Menu
Mtnu.txt (Launchtr/Prograe) mrtstnts a dialog that allows tht ustr to stltct a routt and actvity. Umon

coemltton, it starts RunActvity.txt, massing an arguetnt that contains tht full routt math and fltnaet of tht
actvity to bt run. Mtnu rteains rtsidtnt whilt RunActvity runs, and tht Mtnu dialog will bt mrtstnttd aftr
RunActvity ttreinatts at tht tnd of tht omtratng stssion.

OR_Dtsign_Ovtrvitw.docx 1 / 6 Novtebtr 24, 2017

RunActivity
RunActvity.txt (RunActvity/_Main) is masstd a string arguetnt with tht full flt smtcifcaton of tht actvity

to bt starttd.1 Main (_Main.cs) calls Start with tht fltsmtc as an arguetnt. Start instantatts Sieulator, whost
constructor:

1. Crtatts an objtct TRK (instantattd froe class TRKFilt), whost constructor vtrifts that tht smtciftd
foldtr contains a .trk flt for tithtr MSTS or ORTS. It instantatts tithtr Tr_RouttFilt (MSTS) or
ORTRKData (ORTS), whost etthods will marst tht flt.

2. Crtatts a TDB objtct (instantattd froe TDBFilt), whost constructor vtrifts tht track databast and
rtturns.

3. TStctonDat (instantattd froe TStctonDatFilt) constructor vtrifts track stctons and adds thte to
tht class. Also dots TrackShamts.

4. Actvity (instantattd froe ACTFilt) constructor crtatts Tr_Actvity_Filt (instantattd froe
Tr_Actvity_Filt), which marsts tht actvity flt.

Ieetdiattly aftr Sieulator’s constructor rtturns, Start calls Sieulator.Start, which dots tht following:

1. Initalizts any tet rtcording rtquirtd by tht actvity.
2. Aligns all switchts to thtir dtfault mositons, as smtciftd by tht actvity. Tht inttrnal Track Data

Bast (TDB) data structurt is travtrstd in ordtr to do this.
3. Placts tht mlaytr train.
4. Placts statc consists.
5. Signals will bt initaliztd htrt whtn iemltetnttd.
6. Crtatts a qutut of AI trains.

Whtn Sieulator.Start rtturns, Start instantatts Vitwtr (froe class Vitwtr3D). Vitwtr’s constructor dots
tht following:

1. Stts um ustr gaet sttngs.
2. Crtatts and initalizts tht sound tngint.
3. Initalizts tht tnvironetnt according to tht actvity.
4. Rtads TTYPE.DAT and builds an inttrnal data structurt.
5. Instantatts a Tilt class objtct whost constructor initalizts an 8x8 (x, z) buftr of tlt objtcts.
6. Crtatts subsidiary two or thrtt subsidiary thrtads, ont for rtndtring, ont for loading, and (if tht PC

has eultmlt mroctssors) ont for umdatng. Thrtt classts art instantattd to run in thtst thrtads:
RtndtrProctss, LoadtrProctss, and UmdattrProctss. (Thtir constructors run ieetdiattly umon
instantaton.) Mort on this btlow.

Ieetdiattly following tht rtturn of Vitwtr’s constructor, Start calls Vitwtr.Run which calls
RtndtrProctss.Run. RtndtrProctss.Run runs in tht RtndtrProctss thrtad, and it calls XNA Run (“gaet loom”).

Tht eult-thrtading (eain thrtad, RtndtrProctss, LoadtrProctss, and UmdattrProctss) is an iemortant
tltetnt of Omtn Rails’ dtsign. It tnablts tht omtratng systte to txmloit systtes with eultmlt mroctssors.2

Ltt’s outlint tht rolts of tht thrtt concurrtnt subsidiary thrtads.

1 To run RunActvity in Dtbug eodt undtr Visual C#, instrt a flt smtcifcaton (in quotts)in mrojtct Promtrtts/Dtbug/
Coeeand lint arguetnts, and launch tht mrojtct with Dtbug.

2 Firt um tht Rtsourct Monitor associattd with Windows Task Managtr whtn Omtn Rails runs in windowtd eodt to
watch tht eultmroctssing fun.

OR_Dtsign_Ovtrvitw.docx 2 / 6 Novtebtr 24, 2017

Render Process
Whtn RtndtrProctss is instantattd, its constructor builds a window and instantatts an XNA

GramhicsDtvictManagtr class. As etntontd abovt, aftr tht constructor rtturns, RtndtrProctss.Run is calltd,
which starts tht XNA gaet loom. This will run, synchroniztd with tht rtfrtsh ratt of tht eonitor, mroctssing all
tvtnts associattd with tht gaet window, untl tht gaet tnds.

With tht gaet loom running and tht gramhics dtvict rtady, but btfort tht frst fraet is dismlaytd,
RtndtrProctss.Initalizt will bt autoeatcally calltd. This mtrfores tht following:

1. Vitwtr and eattrials initalizaton.
2. Crtatts and initalizts all rtndtrtrs (“drawtrs”) and caetras.
3. Loads ttrrain, sctntry, and trains for tht startng mositon of tht mlaytr train.
4. Starts tht LoadtrProctss thrtad that will run a gaet loom rtsmonsiblt for loading “conttnt” (ttrrain,

sctntry, trains, ttc.).
5. Sieilarly, it starts tht UmdattrProctss thrtad for a eultmroctssor systte.
6. Unmausts Sieulator.

Pactd at tht eonitor’s natvt fraet ratt, RtndtrProctss.Draw gtts calltd to actually rtndtr all tht
mrieitvts for tht ntxt fraet (mrtmartd by UmdattrProctss).

Loader Process
Onct LoadtrProctss has starttd, it runs a loom that waits untl signaltd to start. Thtn it loads any ntw

gramhics conttnt rtquirtd by tht caetra mositon, and it signals whtn it is dont and branchts back, rtady to do
it again.

Updater Process
Ltt’s assuet (ttemorarily3) that our confguraton has eort than ont mroctssor.

UmdattrProctss also runs a loom (UmdattrProctss.UmdattLoom) that is rtsmonsiblt for mrtmaring tach fraet
for rtndtring. Tht loom btgins with a wait untl signaltd to start. Thtn it dots tht following:

1. Kttms track of rtal tet (wall clock) and coemutts fraets-mtr-stcond (FPS).
2. Calls Vitwtr.Sieulator.Umdatt to umdatt tht statt of tht sieulaton.
3. Handlts ustr inmuts that wtrt rtad in tht RtndtrProctss thrtad.
4. Prtmarts a fraet for dismlay. This involvts calling a nuebtr of smtcializtd mrtmartrs (sky, ttrrain,

sctntry, ttc.) that qutut um “mrieitvts” (t.g., etsh) for rtndtring. Tht list of mrtmartrs is:
a. Caetra.PrtmartFraet
b. SkyDrawtr.PrtmartFraet
c. TtrrainDrawtr.PrtmartFraet
d. SctntryDrawtr.PrtmartFraet
t. TrainDrawtr.PrtmartFraet
f. PrtcimDrawtr.PrtmartFraet
g. InfoDismlay.PrtmartFraet

5. Signals RtndtrProctss that it can mrocttd to rtndtr tht fraet just mrtmartd.
6. Signals UmdattrProctss that it can mrocttd to load ntw conttnt.

Tht bthavior of tht abovt thrtt mroctssts eust bt synchroniztd. Tht dtscrimtons abovt hint at soet of
that synchronizaton. Tht siemliftd illustraton btlow attemts to illustratt tht tet-wist coordinaton of tht
mroctssts. (Tiet fows down tht magt. Tht tet axis is, in no stnst, to scalt.)

3 I mrtsuet that umdatng is dont in tht eain thrtad in tht unimroctssor cast. Howtvtr, I rtally don’t know tht dttails
of how this is handltd. (Mort on this as ey oritntaton mrogrtssts.)

OR_Dtsign_Ovtrvitw.docx 3 / 6 Novtebtr 24, 2017

RenderProcess UpdaterProcess LoaderProcess

Start umdatt for Fraet 1. Sieulator Umdatt.

Handlt ustr inmuts.

Draw Fraet 0 (temty). Prtmart Fraet 1.

Prtmart Loadtr. Load conttnt for Fraet 2

Start umdatt for Fraet 2. Sieulator Umdatt.

Handlt ustr inmuts.

Draw Fraet 1. Prtmart Fraet 2.

Prtmart Loadtr. Load conttnt for Fraet 3.

Start umdatt for Fraet 3 Sieulator Umdatt.

Handlt ustr inmuts.

Draw Fraet 2. Prtmart Fraet 3.

Prtmart Loadtr. Load conttnt for Fraet 4.

Open Rails Terrain

Terrain Fundamentals
If you’ve done any MSTS route-building or read forums in depth, you know that a route’s “world” is divided

into tiles 2048 kilometers square. Further, you’ll recall that a tile is further sub-divided into a 16x16 grid of
patches, each 128 meters square.

MSTS further divides each patch into a 16x16 mesh of vertices. Each set of four adjacent vertices defines a
“cell” with two triangles. Hence, each patch has 2x15x15 = 450 triangles. Another name for a set of adjacent
triangles is a mesh. Such a mesh is considered to be a graphics primitive.

In Open Rails, such a patch is represented by a class named TerrainPatch (derived from a more general (base)
class, RenderPrimitive). When a terrain patch object is created (an instance of TerrainPatch), the class
constructor, called at creation time, gets patch information from the respective TFile (created from a .t file) and
the y-coordinate (elevation) of each vertex from the respective YFile (created from a _y.raw file). The TFile
information is associated with the patch; the YFile information (elevations) is individually associated with the
vertices. Hence, the YFile information displaces the vertices vertically, forming a shaped terrain patch. MSTS
fixes the x- and z- coordinates in place and does not move them in those directions. This is not generally the case
with patches and need not be the case with Open Rails.

During the very first execution of the TerrainPatch constructor, it calculates an index buffer, which is shared
by all subsequently created TerrainPatch objects. This is possible because all TerrainPatch objects use the same
size grid.

Associated with each patch vertex are three vectors: a position vector (x, y, z), a normal vector (Nx, Ny, Nz)
approximating a direction perpendicular to the terrain surface at the vertex, and a texture coordinate vector (u, v),
which is used to determine exactly how a terrain texture will be wrapped over the patch surface. The three
vectors (position, normal, texture coordinate) are represented by an XNA VertexPositionNormalTexture structure.
These three vectors have a total of 8 components (3 + 3+ 2), each component requiring a four-byte floating point
number (float). Hence, each patch requires a minimum of 16x16x8x4 = 8192 bytes.

OR_Dtsign_Ovtrvitw.docx 4 / 6 Novtebtr 24, 2017

The terrain texture will come from MSTS folder TERRTEX. Terrain textures will be image files (.ace for
MSTS) which may be of varying size, but typically 512x512.

With that groundwork established, let’s proceed to examine how tiles are handled.

Tile Handling
Shortly after the simulator starts, Simulator.Start (a method) creates a Viewer3D object called Viewer (a

class). Viewer’s constructor does a bunch of things, but only one thing is related to terrain: It creates a class
called Tiles (note the plural). The Tiles class is a simple one; it includes only:

1. The constructor Tiles.
2. A two-dimensional [tileX, tileZ] buffer, each element of which contains a reference to a tile.

(Elements don’t contain the tile’s data; they contain a reference to the data.) The buffer, private to
the class, is called TileBuffer. The size of the buffer is 8x8.

3. A method, GetTile, which returns a reference to a requested tile. GetTile maintains the buffer. If the
tile requested by [tileX, tileZ] is not in the buffer, GetTile creates a new tile object (an instance of
class Tile), reading the data comprising the tile from a file.

4. A method, GetElevation, which returns a terrain elevation from [x, z] within the tile referenced by
[tileX, tileZ].

Each tile read and added to is represented as an instance of a Tile (singular) class. Each Tile class instance
created includes a TFile class (by reading a .t file) and a YFile class (by reading a _y.raw file). The YFile
constructor reads a 256x256 array of Uint16s (_y.raw file) representing a scaled elevation value between 0 and
65,535. (The RAW file is a scan of elevations from the NW corner to the SE corner in row-major order.)

The Tile class is pretty simple. It includes:

1. Tile, the constructor
2. A TFile class.
3. A YFile class.
4. A, a 256x256 matrix containing the elevation values.
5. IsEmpty, a Boolean flagging whether the tile has been read.
6. A method, GetElevation that fetches an elevation value given interior coordinates [x,z].

TDBTraveller
A TDBTravtlltr is rtsmonsiblt for travtrsing tht routt (as dtfntd by tht track databast). A rtasonablt

eodtl for a TDBTravtlltr is a truck that follows a math on tht routt. It smtcifts tht mositon and dirtcton
(oritntaton) of tht truck. Each instanct of class Train (including AI trains) has two rtftrtncts to instancts of
class TDBTravtllor – FrontTDBTravtlltr and RtarTDBTravtlltr – which rtmrtstnt tht mositon and dirtcton of tht
front and rtar of tht train.

Whtn Sieulator.Start calls mrivatt etthod InitaliztPlaytrTrain, it (InitaliztPlaytrTrain) rtads tht strvict
and consist flts and instantatts a Train objtct. Ntxt, it instantatts a PATTravtlltr, which idtntfts tht mositon
of tht rtar of tht train in tht track databast (TDB). A ntw TDBTravtlltr is crtattd with this inital mositon, and a
rtftrtnct to it is stortd in train.RtarTDBTravtlltr. InitaliztPlaytrTrain thtn mrocttds to build tht consist. With
tht consist coemltttd, InitaliztPlaytrTrain calls train.CalculattPositonOfCars. CalculattPositonOfCars crtatts
a ntw TDBTravtlltr naetd travtltr which is a comy of RtarTDBTravtlltr. It thtn sttms travtlltr forward, a truck
(bogit) at a tet untl it rtachts tht front of tht train. Thtn, a rtftrtnct to travtlltr, now at tht front of tht
train, is assigntd to FrontTDBTravtlltr. Tht rtar-to-front travtrsal is dont in thrtt sttms mtr car (or tngint):

1. Tht travtlltr is eovtd froe tht rtar of tht car to tht mositon of tht rtar truck.4

2. Tht travtlltr is eovtd forward to tht mositon of tht front truck.
4 Truck-to-truck smacing is ammroxieattd as 65 mtrctnt of car ltngth btcaust tht smacing is not rtmorttd in tht .wag flt.

OR_Dtsign_Ovtrvitw.docx 5 / 6 Novtebtr 24, 2017

3. Tht travtlltr is eovtd forward to tht front of tht car.

Tht sttm-wist travtrsal is dont by travtlltr.Movt.

Tht mositons of tht travtlltr at tach of tht trucks art ustd to dtrivt a transforeaton eatrix that corrtctly
oritnts tht car and mositons its ctnttr.

Appendix A – An Object-Oriented Programming Primer
The following description of Object-Oriented Programming (OOP) terminology is offered in the context of

the C# programming language.

Class – A class represents an object in OOP parlance. A class can contain a number of types of members,
most importantly, structures and methods.

Constructor – A method that is called automatically when an instance of a class is created. Commonly, used
to initialize members of the class.

Derived From – The Apple class and Orange class are derived from the Fruit class.

Instance – One occurrence of a class. For example, each apple is an instance of the Apple class.

Method – A member of a class that takes arguments and returns a result. In traditional terminology, a
function.

Reference – Think of it as a pointer to an item (e.g., data, class).

Structure – A member of a class that structures one or more data items.

Appendix B – Keyboard Controls
F2 – Savt.

F5 – HUD1/HUD1+HUD2/nont.

OR_Dtsign_Ovtrvitw.docx 6 / 6 Novtebtr 24, 2017

	Open Rails Design Overview
	Contents
	Major Components
	Launcher
	Menu
	RunActivity
	Render Process
	Loader Process
	Updater Process

	Open Rails Terrain
	Terrain Fundamentals
	Tile Handling

	TDBTraveller
	Appendix A – An Object-Oriented Programming Primer
	Appendix B – Keyboard Controls

