Open Rails Design Overview
This is an attempt to relate the design and operation of Open Rails (OR). It was written from my notes
immediately following an inspection of the OR source code. (In some cases, it’s quite possible that my
interpretation is in-error. In that case, | hope someone will straighten me out.)

My inspection and note-taking sessions were usually related to a specific topic (e.g., terrain). | have hopes
that | will, in the course of time, cover all important aspects of OR. | will introduce perhaps unfamiliar
vocabulary as | go.

Contents
00T) =T o1 PP PPN 1
Y [o] g 6o T4 0] o] o 1] o} £ 3P PP UPPPPPPTPRTRUPPRRRRt 1
(110 0Tl o L= PO U PP PPTTRUPPPP 1
17T o OO OOPPPPPP 1
0 VAot n 1Y/ 1 Y USRS 2
RENAET PrOCESS.eeitieiiiteiitt ettt ettt ettt s b et st e st esat e e s bt e e me e e be e s b e e sabeesanae e e s sanraeeeeennnreeeens 3
oo [T ol o Lol T PSPPSR SPPPPPPP 3
LT To F=) =T gl o o Tl T PUPURRUPR RPN 3
(001 AW - 11 =T - 11 o PO PSPPI 4
Terrain FUNA@mENTAlS.oiiiiiieiiie ettt ettt ettt et e e s st e e s bb e e e sabbeessabeeessabeeesnbeeesabeeesssnnnnnrneaees 4
QL1135 F= T T 1 T =TT 5
T BTFAVEIIET .ttt ettt et ettt et e s bt e s at e e s bt e e bt e e b et s bt e sa b e e smbeesabe e e e e b be e e e e anraeeeeanne 5
Appendix A — An Object-Oriented Programming PriMer..........ueeeeeeiiieeeeeii e ecceccrirrtere e e e e e e eeeae e e e e e e e seseennnnennes 6
Appendix B — Keyboard CONIOlS.......uuiiii ittt e e e e e e e et re e e e e e e aaaaaeeeeeses s s nnsnsstsrasaaneneees 6

Major Components
Open rails is organized into three major components — Launcher, Menu, and RunActivity. A few words on
each is in order.

Launcher
Launcher.exe (Launcher/Program) checks to see if prerequisite software (i.e., libraries) is installed. If all is
well, Launcher starts Menu.exe and terminates.

Menu

Menu.exe (Launcher/Program) presents a dialog that allows the user to select a route and activity. Upon
completion, it starts RunActivity.exe, passing an argument that contains the full route path and filename of the
activity to be run. Menu remains resident while RunActivity runs, and the Menu dialog will be presented after
RunActivity terminates at the end of the operating session.

OR_Design_Overview.docx 1/6 November 24, 2017

RunActivity

RunActivity.exe (RunActivity/ _Main) is passed a string argument with the full file specification of the activity

to be started. Main (_Main.cs) calls Start with the filespec as an argument. Start instantiates Simulator, whose

constructor:

1.

Creates an object TRK (instantiated from class TRKFile), whose constructor verifies that the specified
folder contains a .trk file for either MSTS or ORTS. It instantiates either Tr_RouteFile (MSTS) or
ORTRKData (ORTS), whose methods will parse the file.

Creates a TDB object (instantiated from TDBFile), whose constructor verifies the track database and
returns.

TSectionDat (instantiated from TSectionDatFile) constructor verifies track sections and adds them to
the class. Also does TrackShapes.

Activity (instantiated from ACTFile) constructor creates Tr_Activity_File (instantiated from
Tr_Activity_File), which parses the activity file.

Immediately after Simulator’s constructor returns, Start calls Simulator.Start, which does the following:

N

o v AW

Initializes any time recording required by the activity.

Aligns all switches to their default positions, as specified by the activity. The internal Track Data
Base (TDB) data structure is traversed in order to do this.

Places the player train.

Places static consists.

Signals will be initialized here when implemented.

Creates a queue of Al trains.

When Simulator.Start returns, Start instantiates Viewer (from class Viewer3D). Viewer’s constructor does

the following:

o U A wWN e

Sets up user game settings.

Creates and initializes the sound engine.

Initializes the environment according to the activity.

Reads TTYPE.DAT and builds an internal data structure.

Instantiates a Tile class object whose constructor initializes an 8x8 (x, z) buffer of tile objects.
Creates subsidiary two or three subsidiary threads, one for rendering, one for loading, and (if the PC
has multiple processors) one for updating. Three classes are instantiated to run in these threads:
RenderProcess, LoaderProcess, and UpdaterProcess. (Their constructors run immediately upon
instantiation.) More on this below.

Immediately following the return of Viewer’s constructor, Start calls Viewer.Run which calls

RenderProcess.Run. RenderProcess.Run runs in the RenderProcess thread, and it calls XNA Run (“game loop”).

The multi-threading (main thread, RenderProcess, LoaderProcess, and UpdaterProcess) is an important

element of Open Rails’ design. It enables the operating system to exploit systems with multiple processors.?

Let’s outline the roles of the three concurrent subsidiary threads.

! To run RunActivity in Debug mode under Visual C#, insert a file specification (in quotes)in project Properties/Debug/
Command line arguments, and launch the project with Debug.

? Fire up the Resource Monitor associated with Windows Task Manager when Open Rails runs in windowed mode to
watch the multiprocessing fun.

OR_Design_Overview.docx 2/6 November 24, 2017

Render Process

When RenderProcess is instantiated, its constructor builds a window and instantiates an XNA
GraphicsDeviceManager class. As mentioned above, after the constructor returns, RenderProcess.Run is called,
which starts the XNA game loop. This will run, synchronized with the refresh rate of the monitor, processing all
events associated with the game window, until the game ends.

With the game loop running and the graphics device ready, but before the first frame is displayed,
RenderProcess.Initialize will be automatically called. This performs the following:

Viewer and materials initialization.
Creates and initializes all renderers (“drawers”) and cameras.
Loads terrain, scenery, and trains for the starting position of the player train.

P wnN e

Starts the LoaderProcess thread that will run a game loop responsible for loading “content” (terrain,
scenery, trains, etc.).

5. Similarly, it starts the UpdaterProcess thread for a multiprocessor system.

6. Unpauses Simulator.

Paced at the monitor’s native frame rate, RenderProcess.Draw gets called to actually render all the
primitives for the next frame (prepared by UpdaterProcess).

Loader Process

Once LoaderProcess has started, it runs a loop that waits until signaled to start. Then it loads any new
graphics content required by the camera position, and it signals when it is done and branches back, ready to do
it again.

Updater Process
Let’s assume (temporarily®) that our configuration has more than one processor.

UpdaterProcess also runs a loop (UpdaterProcess.UpdateLoop) that is responsible for preparing each frame
for rendering. The loop begins with a wait until signaled to start. Then it does the following:

Keeps track of real time (wall clock) and computes frames-per-second (FPS).
Calls Viewer.Simulator.Update to update the state of the simulation.
Handles user inputs that were read in the RenderProcess thread.

P wnN e

Prepares a frame for display. This involves calling a number of specialized preparers (sky, terrain,
scenery, etc.) that queue up “primitives” (e.g., mesh) for rendering. The list of preparers is:
a. Camera.PrepareFrame
SkyDrawer.PrepareFrame
TerrainDrawer.PrepareFrame
SceneryDrawer.PrepareFrame
TrainDrawer.PrepareFrame

A

PrecipDrawer.PrepareFrame

g. InfoDisplay.PrepareFrame
5. Signals RenderProcess that it can proceed to render the frame just prepared.
6. Signals UpdaterProcess that it can proceed to load new content.

The behavior of the above three processes must be synchronized. The descriptions above hint at some of
that synchronization. The simplified illustration below attempts to illustrate the time-wise coordination of the
processes. (Time flows down the page. The time axis is, in no sense, to scale.)

* | presume that updating is done in the main thread in the uniprocessor case. However, | really don’t know the details
of how this is handled. (More on this as my orientation progresses.)

OR_Design_Overview.docx 3/6 November 24, 2017

RenderProcess UpdaterProcess LoaderProcess

Start update for Frame 1. » Simulator Update.

Handle user inputs.

Draw Frame 0 (empty). Prepare Frame 1.
|— Prepare Loader. » Load content for Frame 2
y
Start update for Frame 2. » Simulator Update.
Handle user inputs. <
Draw Frame 1. Prepare Frame 2.
r Prepare Loader. »| Load content for Frame 3.
A
Start update for Frame 3 » Simulator Update.
Handle user inputs. <
Draw Frame 2. Prepare Frame 3.
I_ Prepare Loader. »| Load content for Frame 4.

Open Rails Terrain

Terrain Fundamentals

If you’ve done any MSTS route-building or read forums in depth, you know that a route’s “world” is divided
into tiles 2048 kilometers square. Further, you’ll recall that a tile is further sub-divided into a 16x16 grid of
patches, each 128 meters square.

MSTS further divides each patch into a 16x16 mesh of vertices. Each set of four adjacent vertices defines a
“cell” with two triangles. Hence, each patch has 2x15x15 =450 triangles. Another name for a set of adjacent
triangles is a mesh. Such a mesh is considered to be a graphics primitive.

In Open Rails, such a patch is represented by a class named TerrainPatch (derived from a more general (base)
class, RenderPrimitive). When a terrain patch object is created (an instance of TerrainPatch), the class
constructor, called at creation time, gets patch information from the respective TFile (created from a .t file) and
the y-coordinate (elevation) of each vertex from the respective YFile (created from a _y.raw file). The TFile
information is associated with the patch; the YFile information (elevations) is individually associated with the
vertices. Hence, the YFile information displaces the vertices vertically, forming a shaped terrain patch. MSTS
fixes the x- and z- coordinates in place and does not move them in those directions. This is not generally the case
with patches and need not be the case with Open Rails.

During the very first execution of the TerrainPatch constructor, it calculates an index buffer, which is shared
by all subsequently created TerrainPatch objects. This is possible because all TerrainPatch objects use the same
size grid.

Associated with each patch vertex are three vectors: a position vector (X, y, z), a normal vector (N, Ny, N,)
approximating a direction perpendicular to the terrain surface at the vertex, and a texture coordinate vector (u, v),
which is used to determine exactly how a ferrain texture will be wrapped over the patch surface. The three
vectors (position, normal, texture coordinate) are represented by an XNA VertexPositionNormal Texture structure.
These three vectors have a total of 8 components (3 + 3+ 2), each component requiring a four-byte floating point
number (float). Hence, each patch requires a minimum of 16x16x8x4 = 8192 bytes.

OR_Design_Overview.docx 4/6 November 24, 2017

The terrain texture will come from MSTS folder TERRTEX. Terrain textures will be image files (.ace for
MSTS) which may be of varying size, but typically 512x512.

With that groundwork established, let’s proceed to examine how tiles are handled.

Tile Handling

Shortly after the simulator starts, Simulator.Start (a method) creates a Viewer3D object called Viewer (a
class). Viewer’s constructor does a bunch of things, but only one thing is related to terrain: It creates a class
called Tiles (note the plural). The Tiles class is a simple one; it includes only:

1. The constructor Tiles.

2. A two-dimensional [tileX, tileZ] buffer, each element of which contains a reference to a tile.
(Elements don’t contain the tile’s data; they contain a reference to the data.) The buffer, private to
the class, is called TileBuffer. The size of the buffer is 8x8.

3. A method, GetTile, which returns a reference to a requested tile. GetTile maintains the buffer. If the
tile requested by [tileX, tileZ] is not in the buffer, GetTile creates a new tile object (an instance of
class Tile), reading the data comprising the tile from a file.

4. A method, GetElevation, which returns a terrain elevation from [x, z] within the tile referenced by
[tileX, tileZ].

Each tile read and added to is represented as an instance of a Tile (singular) class. Each Tile class instance
created includes a TFile class (by reading a .t file) and a YFile class (by reading a _y.raw file). The YFile
constructor reads a 256x256 array of Uint16s (_y.raw file) representing a scaled elevation value between 0 and
65,535. (The RAW file is a scan of elevations from the NW corner to the SE corner in row-major order.)

The Tile class is pretty simple. It includes:

Tile, the constructor

A TFile class.

A YFile class.

A, a 256x256 matrix containing the elevation values.

IsEmpty, a Boolean flagging whether the tile has been read.

A method, GetElevation that fetches an elevation value given interior coordinates [x,z].

AN S o e

TDBTraveller

A TDBTraveller is responsible for traversing the route (as defined by the track database). A reasonable
model for a TDBTraveller is a truck that follows a path on the route. It specifies the position and direction
(orientation) of the truck. Each instance of class Train (including Al trains) has two references to instances of
class TDBTravellor — FrontTDBTraveller and RearTDBTraveller — which represent the position and direction of the
front and rear of the train.

When Simulator.Start calls private method InitializePlayerTrain, it (InitializePlayerTrain) reads the service
and consist files and instantiates a Train object. Next, it instantiates a PATTraveller, which identifies the position
of the rear of the train in the track database (TDB). A new TDBTraveller is created with this initial position, and a
reference to it is stored in train.RearTDBTraveller. InitializePlayerTrain then proceeds to build the consist. With
the consist completed, InitializePlayerTrain calls train.CalculatePositionOfCars. CalculatePositionOfCars creates
a new TDBTraveller named traveler which is a copy of RearTDBTraveller. It then steps traveller forward, a truck
(bogie) at a time until it reaches the front of the train. Then, a reference to traveller, now at the front of the
train, is assigned to FrontTDBTraveller. The rear-to-front traversal is done in three steps per car (or engine):

1. The traveller is moved from the rear of the car to the position of the rear truck.*
2. The traveller is moved forward to the position of the front truck.

* Truck-to-truck spacing is approximated as 65 percent of car length because the spacing is not reported in the .wag file.

OR_Design_Overview.docx 5/6 November 24, 2017

3. The traveller is moved forward to the front of the car.
The step-wise traversal is done by traveller.Move.

The positions of the traveller at each of the trucks are used to derive a transformation matrix that correctly
orients the car and positions its center.

Appendix A - An Object-Oriented Programming Primer
The following description of Object-Oriented Programming (OOP) terminology is offered in the context of
the C# programming language.

Class — A class represents an object in OOP parlance. A class can contain a number of types of members,
most importantly, structures and methods.

Constructor — A method that is called automatically when an instance of a class is created. Commonly, used
to initialize members of the class.

Derived From — The Apple class and Orange class are derived from the Fruit class.
Instance — One occurrence of a class. For example, each apple is an instance of the Apple class.

Method — A member of a class that takes arguments and returns a result. In traditional terminology, a
function.

Reference — Think of it as a pointer to an item (e.g., data, class).
Structure — A member of a class that structures one or more data items.
Appendix B - Keyboard Controls
F2- Save.

F5—- HUD1/HUD1+HUD2/none.

OR_Design_Overview.docx 6/6 November 24, 2017

	Open Rails Design Overview
	Contents
	Major Components
	Launcher
	Menu
	RunActivity
	Render Process
	Loader Process
	Updater Process

	Open Rails Terrain
	Terrain Fundamentals
	Tile Handling

	TDBTraveller
	Appendix A – An Object-Oriented Programming Primer
	Appendix B – Keyboard Controls

